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GLM and quantile regression models
in a prioriratemaking’

Classification a priori ratemaking in non-life insurance applies a different type of multivariate regres-
sion models, which is more sensitive to the assumptions that significantly restrict the area of their
applications. When an error term is non-Gaussian, asymmetric, fat-tailed or in the presence of outliers,
it may have serious consequences for the correct inference of the factor’s impact on an endogenous
variable. In this paper we analyze two types of regression, which take into account the mentioned prob-
lems. The first regression is based on the GLM technique while the second used the modified quantile
regression technique. Since the quantile regression is a non-parametric method, there is no measure
of the relative quality of the model. For this reason, we propose the cross-validation procedure to com-
pare two models and choose the optimal in terms of minimum cross-validation error.
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Introduction

The ratemaking process is one of the most important factors in issues regarding insurance portfo-
lios. The techniques of ratemaking are actually based on loss distribution or their moments, which
are estimated using historical data. The key challenge is to choose the correct model for the esti-
mation of loss value. Ratemaking of insurance portfolios is frequently based on different multivari-
ate regression models which allow the investigation of rating factors®. Nevertheless, the ordinary
multivariate regression model has some crucial disadvantages — it is sensitive to assumptions
that significantly restrict the area of their applications. In an insurance data case, when an error
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term is non-normal, asymmetric, fat-tailed or in the presence of outliers, it may have serious con-
sequences for the correct inference of the factor’'s impact on an endogenous variable. Moreover,
the ordinary multivariate regression model often ignores a specific feature of the insurance data
such as: the possibility of catastrophic losses, the dependence of insured objects on each other (i.e.,
cumulative risk] or information shortfall to verify the statistical significance of the model chosen®.
Therefore, it is important to use models and estimators that are more robust to restrictive classical
regression assumptions for modeling insurance data. GLM is a good example of such a model and
is therefore used by actuaries®. However, there are some problems connected with GLM. The main
problem lies in choosing the predictors’ distribution in GLM. This can be solved with the simulation
procedure based on the Monte Carlo method®. The other approach proposed for modeling insured
portfolios of policies is the quantile regression approach®. This is consistent with the idea of using
the distribution quantile for ratemaking. The additional advantage of this method is the fact that it
allows the estimation of the net premium rates including safety loadings and it may be estimated
as a quantile of loss distribution.

In this paper we present two regression models in a priori ratemaking: model GLM and model
EQORM. As there is no proper measure to compare GLM and EQRM models, we propose the cross-
validation procedure based on RMSE error. In the case study we analyze an example of motor insur-
ance portfolio taken from literature’. All computations are performed with the statistical software R.

1. Classical a priori ratemaking — model GLM

Nowadays, classical statistical techniques used in a priori ratemaking are GLM models. Let Y, .
Y be independent random variables with y, , y, realizations, where Y indicates the claim severity
of i-th policy in an insurance portfolio. Further let us denote k risk factors as X,EX, and assume that
Y follows three-parameter Tweedie distribution Y ~ T(u, @ ,pJ. The first parameter ¢ is the disper-
sion parameter and the second parameter ¢ is the power in the variance of Y;:

Var(Y)=q@u’,i=1,...,n (1)
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The proper GLM model for a priori ratemaking has the following components:

Y, ~T(14,,0.p)
17 =xp (2)
u,=exp(n;)

where x, denotes the i-th row of the model matrix X for the i-th policyholder and B=(/3,, 3,,... 3.)
denotes the vector for fixed effects estimated directly from the data. The link function is taken as
log(.] since the multiplicative model is usually applied.

In order to estimate the model (2], we propose a two-step procedure. In the first step, the pa-
rameters @ and p are estimated using maximum likelihood estimation and Fourier inversion®.
In the second step, classical IWSL algorithm to estimate the vector 8 is used with @ and p plug-ins.

Based on the results of a priori ratemaking, the base premium for the whole portfolio and
the tariff rate for i-th policyholder can be calculated:

B :exp[ﬁol
t; =exp [XTB]

The indicator t; shows the increase or decrease of the base premium B for i-th policyholder.

(3)

2. Alternative a prioriratemaking — model EQRM

The alternative approach for a priori ratemaking is the distribution-free quantile regression model™.
Similarly as in the GLM model, the goal of the quantile regression model is to estimate vector B for
a sample of realizations y, ... y, of a sequence of independent random variables Y, . Y . The basic as-
sumption is that random variables Y, , ¥, are taken with distribution P(Y, < y)= 3(y—x;B)and the distri-
bution J is unknown. The linear quantile regression model of order 7,0 < 7< 1is given by the formula:

UT[Yf|xi]=xfTB (4)

where 0_(Y, |x,.] indicates the conditional quantile of random variable Y, for probability 7.

To apply the linear model (4) in a priori ratemaking and take into account the multiplicative model,
some modification is necessary. Assuming logarithmic transformation of the conditional quantile
0. [Y,.|x,], we receive the exponential quantile regression model (EQRM) of order 7~ of the form:

0.(v|x,)=exp(x/B) (5)

where 0..(Y; |x,.] indicates the conditional quantile of random variable Y for probability 7',0< 7'< 1,and

B =(p), B, ..., B ) is the vector of parameters of order 7* (see para. 6).

9. P K.Dunn, and G. K. Smyth, “Evaluation of Tweedie exponential dispersion model densities by Fourier inver-
sion.” Statistics and Computing 18,1 (2008).

10. A.A.Kudryavtsey, “Using quantile regression for ratemaking,” Insurance: Mathematics and Economics 45 (2009).

11. R.Koenker, and B. Basset, “Regression Quantiles,” Econometrica 46 (1978]).

—-51 -



Insurance Review 4/2013 / Wiadomosci Ubezpieczeniowe 4/2013

According to para. 8, we define the 7'-th quantile regression estimator of B as the vector b
being the solution of the minimization problem:

min| Y oly-expkb]+ Y 1-7 )y —exp(x/b) (6)
beR™ | r L T
i{iy; 2x;b} ie{izy; <x; b}
Because the error distribution term is unspecified, statistical inference is based on nonpara-
metric approach — the bootstrap or Monte Carlo method.
The results of a priori ratemaking are as with a classical approach: the base premium for

the whole portfolio and the tariff rate for i-th policyholder:
B =exp(8))
§ =exp(x/B)

(?)

3. Cross-validation procedure

In order to unify the process of comparing the classical and alternative approach in a priori

ratemaking, we propose applying the cross-validation procedure based on RMSE error'. In our

case study we use a 5-fold cross-validation algorithm for models (2) and (5). The procedure

is as follows:

(s1) randomly divide the training set into k = 5 approximately equally sized parts, (n — the train-
ing set size, m- the size of the I-th subset, /=1, ..., 5)

(s2) build every model 5 times using 4 of 5 parts (n — m, observations}, treating excluded obser-
vations as the validation set,

(s3] calculate 5 times the value of the mean squared error RMSE, =
dation set, s

. L m
(s4) estimate the cross-validation error: cv = Z—’RMSE,
i=1

using the vali-

2[9‘1&112

The model with the smallest cv value is taken as a better estimation of the base premium
in the portfolio and tariff rates.

4. Case study — automobile insurance portfolio

In order to illustrate the process of a priori ratemaking with GLM and EQRM models, we consid-
ered a motor insurance portfolio from the former Swedish insurance company Wasa, which
concerns partial motor hull insurance, for motorcgcles”. In the model we complied the follow-
ing rating variables:

12. S.Portnoy, and R. Koenker, “The Gaussian Hare and the Laplacian Tortoise: Computability of Squared— Error
Versus Absolute-Error Estimators, with Discusssion,” Statistical Science 12 (1997).

13. E.Ohlsson, and B. Johansson, “Non-Life Insurance Pricing with Generalized Linear Models,” Berlin: Springer—
Verlag, 2010.
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Rating Rating variable Rating variable
variable (origin name) (description)
X, Agarald owner’s age
X, Kon gender
X Mcklass MC class, a classification by the so called EV ratio, defined as [Engine

power in kW x 100] / (Vehicle weight in kg + 75), rounded to the nearest
lower integer. The 75 kg represents the average driver’s weight.

X, Fordald vehicle age

E Duration number of policy years (exposure)
0 Antskad number of claims

Y Skadkost claim cost

Source: the author’s own research.

Firstly, we considered the GLM model (2], and the parameters p and ¢ were estimated
with R package {tweedie}. Following that, the GLM model was constructed with the following
components:

Y ~T(u,=0.008,p=1.63)

7 =x,B (8)
u;=exp(n,)

Finally, we estimated the model (8] using an IWSL algorithm as well as the model (5] by mini-
mization of the problem (6). The computations were performed with two R Packages: {stats} for
GLM and {quantreg} for EQRM models.

At the initial stage of the estimation of all rating, variables X, ..., X, were included in the model,
but only the “owner’s age” proved to be statistically significant. Ultimately, in GLM and EQRM models
only one rating variable was introduced. The results of the estimation are shownin Tab. 1 and Tab 2.

Table 1. Model parameters for GLM and EQRM models

Estimate s.e. p-value Estimate s.e. p-value
Intercept 9,44 0,28 0,00 10,47 0,45 0,00
The owner’s age B 0,67 0,31 0,03 0,88 0,46 0,06
The owner’s age C 1,10 0,31 0,00 1,26 0,51 0,01
The owner’s age D 0,95 0,33 0,00 1,51 0,51 0,00
The owner’s age E 0,66 0,31 0,03 1,29 0,53 0,02
The owner’s age F 0,78 0,33 0,02 1,38 0,64 0,03
The owner’s age G -0,12 0,53 0,82 0,37 0,58 0,53

Source: the author’s own research.
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Table 2. The summary of the estimation of claim costs for the owner’s age

The owner’s The numbers Classes
of policies \ GLM EQRM Mean Claim cost
age . . of the owner’s age
in the portfolio

17-20 1658 (2.66%) | D0° C’Z’m cost 12 536 14472 11956
21-25 5831 (9.36%) B 24 408 37 798 23874
26-30 7311 (11.73%) C 37 578 53637 34421
31-40 9997 (16.04%) D 32500 34892 28681
41-50 19258 (30.9%) E 24 292 23156 22516
51-50 13521 (21.7%) F 2r 221 16 815 23 827

61— 4746 (7.62%) G 11077 12 708 11007

Source: the author’s own research.

Figure 1. Estimated claim costs for the owner’s age — the comparison
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Source: the author’s own research.

Since only one rating variable is statistically significant, we compare the estimated claim cost
in the portfolio with the mean value in groups. In both analyzed models, the base claim cost is
relatively higher than the mean claim cost. The similar situation is in the case of the fitted claim
costs obtained in the GLM model. We also observe a large discrepancy in the results obtained
in EQRM model when compared to the mean. In the preliminary comparison, both GLM and EQRM
models (Fig. 1] clearly show that claim costs estimated by the GLM model are closer to mean
costs than in the EQRM. In order to compare models by means of a unified measure, the 5-fold
cross-validation procedure was applied. RMSE error in each validation set and Cross-validation
RMSE (cv) are as follows:
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Table 3. RMSE for GLM and EQRM models

Validation set RMSE GLM RMSE EQRM
ValidPart1 44 242,10 46 440,60
ValidPart2 34 029,20 35833,40
ValidPart3 34 799,30 42 178,10
ValidPart4 44 823,10 41 178,40
ValidPart5 48 603,80 45 142,90

Source: the author’s own research.

Table 4 Cross-validation GLM and EQRM model

Model Cross-validation RMS...
GLM 41 299,5
EQRM 42 154,7

Source: the author’s own research.

For the analyzed portfolio, the lowest cv error was obtained for the GLM model. Therefore, in this
case, for further calculations of tariff rates and net premiums for the i-th policy, the GLM model
should be used. Using the cross-validation procedure gives fairly demonstrative results that may
be a prelude to further analysis and verification of the models. The problem lies in the selection
of unified tests that would allow the final choice of the method for a priori ratemaking,

5. Conclusions

Nowadays, GLMs are standard industry practice for a priori ratemaking. These models extend
the ordinary linear models to the class of the exponential dispersion family of distributions. How-
ever, problems with wrong-fitted distribution can still occur. That is why we tested the capabilities
of the quantile regression in ratemaking. Firstly, the distribution of error terms is left unspecified —
this is the main virtue of the method as far as robustness to outliers is concerned. Secondly, quan-
tile estimates detect the influence of co-variates on alternate parts of the conditional distribution,
which we can choose arbitrarily (by using various orders of quantile]. Thus, quantile regression
can be recommended in cases of non-normal asymmetric distributions — asymmetric or fat-tailed
distributions. Despite these advantages, the GLM model can still be the better solution. A useful
technique for a model selection is the cross-validation procedure.

Quantile regression is becoming more and more popular in practice, especially in finance the-
ory. We suspect that it could also be a very useful tool in the insurance business™. We note that

14. AA. Kudryavtsev, “Using quantile regression for ratemaking,” Insurance: Mathematics and Economics 45
(2009).
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the distribution-free approach is often used for estimation®®. Applications of quantile regression
for the Polish capital market can be found in w papers?®.
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Modele GLM i regresji kwantylowej w taryfikacji a priori

W procesie taryfikacji a priori w ubezpieczeniach majgtkowych wykorzystywane sq gtéwnie modele re-
gresyjne klasy GLM, w ktérych przyjmowane jest zafozenie odnosnie zmiennej objasnianej umozliwiajqce
przyjecie w modelu innego rozktadu prawdopodobiehstwa niz jedynie rozktad normalny. Zatem rodzi
sie problem wyboru rozktadu zaktadanego w modelu. W niniejszym artykule rozpatrujemy mozliwo$¢
zastosowania regresji kwantylowej, w ktorej nie zaktada sie zadnej postaci rozkfadu, co eliminuje
wspomniany wyzej problem. Rozwazamy zaréwno model GLM jak réwniez model zmodyfikowanej re-
gresji kwantylowej dla portfela polis ubezpieczeniowych. Jako ze regresja kwantylowa jest modelem
nieparametrycznym, nie zdefiniowano miary bedqcej odpowiednikiem kryterium AIC w modelu GLM.
Powoduje to trudnosci w poréwnywaniu modeli, a dalej w ostatecznym wyborze modelu do taryfikacji.
Dlatego w pracy proponujemy zastosowanie procedury kroswalidacji w celu poréwnania modeli GLM
oraz regresji kwantylowej i dalej wyboru modelu lepszego tzn. takiego, ktéry daje mniejszy btqd cv.

Stowa kluczowe: ubezpieczenia majqtkowe, taryfikacja a priori, model GLM, regresja kwantylowa,
kroswalidacka.
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